
Django-flash Documentation
Release 1.8

Destaquenet Technology Solutions

April 26, 2012

CONTENTS

1 Documentation contents 3
1.1 Installation . 3
1.2 Configuration . 3
1.3 Using Django-Flash . 6
1.4 Creating a custom flash storage backend . 9
1.5 Creating a custom serialization codec . 10
1.6 Django-Flash overview . 10
1.7 Getting Involved . 16
1.8 Changelog . 17

2 Indices and tables 21

Python Module Index 23

Index 25

i

ii

Django-flash Documentation, Release 1.8

Django-Flash is a simple Django extension that provides support for Rails-like flash messages.

The flash is a temporary storage mechanism that looks like a Python dictionary, so you can store values associated with
keys and later retrieve them. It has one special property: by default, values stored into the flash during the processing
of a request will be available during the processing of the immediately following request. Once that second request
has been processed, those values are removed automatically from the storage.

This is an open source project licenced under the terms of The BSD License and sponsored by Destaquenet Technology
Solutions, a brazilian software development and consultancy startup.

See Also:

PDF version of this documentation.

CONTENTS 1

http://www.rubyonrails.org/
http://www.opensource.org/licenses/bsd-license.php
http://www.destaquenet.com/
http://www.destaquenet.com/
http://djangoflash.destaquenet.com/django-flash.pdf

Django-flash Documentation, Release 1.8

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION CONTENTS

1.1 Installation

There are several ways to download and install Django-Flash:

Via PyPI

Execute the following command line to download and install the latest stable version from CheeseShop:

$ easy_install -U django-flash

Follow these instructions to install SetupTools if you don’t have it already.

Via GitHub

If you are a Git user and want to take a closer look at the project’s source code, you would rather clone
our public repository instead:

$ git clone git://github.com/danielfm/django-flash.git
$ cd django-flash
$ python setup.py install

Zip file/tarball

Django-Flash is also available for download as compressed archives (either zip and tgz). After un-
zip/untar the archive, execute the following command to install Django-Flash:

$ python setup.py install

Manually

To add Django-Flash to your project as a bundled library, just add the djangoflash directory into your
project along with the other apps.

1.2 Configuration

In order to plug Django-Flash to your project, open your project’s settings.py file and do the following changes:

TEMPLATE_CONTEXT_PROCESSORS = (
’djangoflash.context_processors.flash’,

)

MIDDLEWARE_CLASSES = (
’django.contrib.sessions.middleware.SessionMiddleware’,

3

http://pypi.python.org/pypi
http://pypi.python.org/pypi/setuptools
http://git-scm.com/
http://github.com/danielfm/django-flash/tree/master
http://github.com/danielfm/django-flash/downloads

Django-flash Documentation, Release 1.8

’djangoflash.middleware.FlashMiddleware’,
)

That’s all the required configuration.

Warning: The djangoflash.middleware.FlashMiddleware class must be declared after the
SessionMiddleware class.

1.2.1 Django-Flash and requests to media files

Django itself doesn’t serve static (media) files, such as images, style sheets, or video. It leaves that job to whichever
web server you choose. But, during development, you can use the django.views.static.serve() view to
serve media files.

The problem with it is that, as a regular view, requests to django.views.static.serve() trigger the installed
middlewares. And since the flash gets updated by a middleware, messages might be removed from the flash by accident
if the response causes the web browser to issue requests to fetch static files.

To make Django-Flash work well with the django.views.static.serve() view, you can add the setting
FLASH_IGNORE_MEDIA to your project’s settings.py file:

FLASH_IGNORE_MEDIA = True # Optional. Default: DEBUG

Set the FLASH_IGNORE_MEDIA setting to True, and Django-Flash won’t remove any message from the flash
if the request URL resolves to django.views.static.serve(). Otherwise, every request will trigger the
djangoflash.middleware.FlashMiddleware as usual.

Note: This setting is optional; its default value is DEBUG. So, if you adjust the DEBUG setting according to the
environment in which the application runs (as you should), you don’t have to worry about this setting at all, things will
just work.

1.2.2 Flash storage backends

Since version 1.5, Django-Flash supports custom flash storage backends.

By default, Django-Flash provides two built-in storage backends:

• djangoflash.storage.session – Session-based storage (default);

• djangoflash.storage.cookie – Cookie-based storage;

See Also:

Creating a custom flash storage backend

Using the session-based storage

Django-Flash uses the session-based storage by default, so you don’t need to do anything else to use it.

Although you are not required to do so, you can add the following setting to your project’s settings.py file to
make it clear about what flash storage backend is being used:

FLASH_STORAGE = ’session’ # Optional

This storage backend doesn’t rely on codecs to serialize and de-serialize the flash data; it lets Django handle this.

4 Chapter 1. Documentation contents

Django-flash Documentation, Release 1.8

Using the cookie-based storage

If you want to use the cookie-based storage instead the default one, then add the following setting to the
settings.py file:

FLASH_STORAGE = ’cookie’

Since cookies will be used to store the contents of the flash scope, Django-Flash doesn’t require you to add the
SessionMiddleware class to the MIDDLEWARE_CLASSES section of your project’s settings anymore.

This storage backend relies on codecs to serialize and de-serialize the flash data.

1.2.3 Flash serialization codecs

Since version 1.7, Django-Flash supports custom flash serialization codecs.

By default, Django-Flash provides three built-in codecs:

• djangoflash.codec.json_impl – JSON-based codec (default);

• djangoflash.codec.json_zlib_impl – JSON/zlib-based codec;

• djangoflash.codec.pickle_impl – Pickle-based codec;

See Also:

Creating a custom serialization codec

Using the JSON-based codec implementation

For security reasons, Django-flash uses the JSON-based codec implementation by default, so you don’t need to do
anything else to use it.

Although you are not required to do so, you can add the following setting to your project’s settings.py file to
make it clear about what codec implementation is being used:

FLASH_CODEC = ’json’ # Optional

There’s also an alternative version of this codec that uses the zlib module to reduce the encoded flash footprint.
This is particularly useful when the flash storage backend in use (such as the cookie-based storage) cannot handle the
amount of data in the flash:

FLASH_CODEC = ’json_zlib’

Using the Pickle-based codec implementation

If you want to use the Pickle-based codec implementation instead the default one, then add the following setting to the
settings.py file:

FLASH_CODEC = ’pickle’

Warning: The use of this codec is not recommended since the Pickle documentation itself clearly states that it’s
not intended to be secure against erroneous or maliciously constructed data.

1.2. Configuration 5

http://docs.python.org/library/pickle.html

Django-flash Documentation, Release 1.8

1.3 Using Django-Flash

Once plugged to your project, Django-Flash automatically adds a flash attribute to the
django.http.HttpRequest objects received by your views. This property points to a
djangoflash.models.FlashScope instance, which supports most if not all operations provided by a
simple Python dict.

Here goes some examples on how to manipulate this scope from a view:

def my_view(request):
request.flash[’key’] = ’value’ # Puts a string to the flash scope
request.flash.put(key=’value’) # Alternative syntax that does the same as above
’key’ in request.flash # Checks if the object is available at the flash scope
request.flash[’key’] # Gets an object from the flash scope
del request.flash[’key’] # Removes an object from the flash scope

To see the list of all methods available to you, take a look at the djangoflash.models.FlashScope documen-
tation.

Although this example uses only string values, you are free to use, both as keys and values, any object that can be
serialized by flash serialization codec in use.

1.3.1 Using the flash

You can use the flash the same way you use a plain dict since their interface are very similar:

def my_view(request):
request.flash[’key’] = ’value’ # Store a value
request.flash[’key’] = ’another value’ # Replace a value
del request.flash[’key’] # Remove a value
for key, value in request.flash.items(): # And so on...

print ’%s - %s’ % (key, value)

The flash also allows you to easily store several values under the same key. To do this just use the
djangoflash.models.FlashScope.add() method:

def my_view(request):
print ’key’ in request.flash # Output: False
request.flash.add(’key’, ’one’)
request.flash.add(’key’, ’two’)
print request.flash[’key’] # Output: [’one’, ’two’]

request.flash[’key’] = ’one’
request.flash.add(’key’, ’two’)
request.flash.add(’key’, ’three’)
print request.flash[’key’] # Output: [’one’, ’two’, ’three’]

1.3.2 Flash-scoped objects: the default lifecycle

First let’s see a basic example of how Django-Flash controls the lifecycle of flash-scoped objects. Consider the
following views:

URL: http://server/app/first
def first_view(request):

request.flash[’message’] = ’My message’
return HttpResponseRedirect(reverse(second_view))

6 Chapter 1. Documentation contents

Django-flash Documentation, Release 1.8

URL: http://server/app/second
def second_view(request):

print request.flash[’message’] # Output: My message
request.flash[’another_message’] = ’Something’
return HttpResponseRedirect(reverse(third_view))

URL: http://server/app/third
def third_view(request):

print request.flash[’another_message’] # Output: Something
print ’message’ in request.flash # Output: False
return HttpResponseRedirect(reverse(fourth_view))

URL: http://server/app/fourth
def fourth_view(request):

return HttpResponse(...)

Let’s say that we have opened our web browser and issued a request to http://server/app/first. When first_view()
executes, it stores an object inside the flash under the key message. The last line returns a HTTP Redirect, which
makes our web browser fire a GET request to http://server/app/second.

When second_view() executes, it prints the content of the flash-scoped object under the key message, which
was stored in the previous request by first_view(). The next line of code stores another object inside the flash
under the key another_message. Again, the last line returns a HTTP Redirect, which makes our web browser fire
a GET request to http://server/app/third.

When third_view() executes, the flash-scoped object under the key another_message, which was stored in
the previous request by second_view(), is available for use. But, at the same time, the flash-scoped object added
by first_view() was automatically removed.

See Also:

Django-Flash overview

1.3.3 Managing flash lifecycle

By default, all objects stored inside the flash survives until the very next request, being automatically removed after
that. Unfortunately, this default behavior might not be enough in some situations.

Preventing flash-scoped objects from being removed

We can prevent flash-scoped objects from being removed by using the
djangoflash.models.FlashScope.keep() method:

def first_view(request):
request.flash[’message’] = ’Operation succeeded!’
return HttpRedirectResponse(reverse(second_view))

def second_view(request):
print request.flash[’message’] # Output: Operation succeeded!
request.flash.keep(’message’)
return HttpRedirectResponse(reverse(third_view))

def third_view(request):
print request.flash[’message’] # Output: Operation succeeded!
return HttpRedirectResponse(reverse(fourth_view))

1.3. Using Django-Flash 7

http://server/app/first
http://server/app/second
http://server/app/third

Django-flash Documentation, Release 1.8

def fourth_view(request):
print ’message’ in request.flash # Output: False
return HttpResponse(...)

If you want to keep all flash-scoped objects, just call the djangoflash.models.FlashScope.keep()method
with no arguments:

def second_view(request):
request.flash.keep()
return HttpRedirectResponse(reverse(third_view))

A more declarative way to keep values is also supported through the
djangoflash.decorators.keep_messages() decorator:

from djangoflash.decorators import keep_messages

Keeps the entire flash...
@keep_messages
def second_view(request):

return HttpRedirectResponse(reverse(third_view))

...or specific messages
@keep_messages(’message’, ’another_message’)
def second_view(request):

return HttpRedirectResponse(reverse(third_view))

Adding an immediate flash-scoped object

It’s sometimes convenient to store an object inside the flash and use it on the current request only.

This can be done by using the djangoflash.models.FlashScope.now attribute:

def first_view(request):
request.flash.now[’message’] = ’My message’
request.flash.now(message=’My message’) # Alternative syntax
print request.flash[’message’] # Output: My message
return HttpRedirectResponse(reverse(second_view))

def second_view(request):
print ’message’ in request.flash # Output: False

1.3.4 Accessing flash-scoped objects from view templates

We already know how to access the flash from views. But what about the view templates?

See Also:

djangoflash.context_processors module.

It’s just as easy:

<html>
<head>

<title>My template</title>
</head>
<body>

{% if flash.message %}

8 Chapter 1. Documentation contents

Django-flash Documentation, Release 1.8

<!-- There’s a flash-scoped object under the ’message’ key -->

<div class="flash_message">
<p>{{ flash.message }}</p>

</div>
{% endif %}

</body>
</html>

It’s also possible to iterate over all flash-scoped objects using the {% for %} tag if you want to:

<html>
<head>

<title>My template</title>
</head>
<body>

{% if flash %}
<!-- There’s one or more flash-scoped objects -->

{% for key, value in flash.items %}
<div class="flash_{{ key }}">

<p>{{ value }}</p>
</div>

{% endfor %}
{% endif %}

</body>
</html>

1.4 Creating a custom flash storage backend

Since version 1.5, Django-Flash supports custom flash storage backends.

By default, Django-flash provides two built-in storage backends:

• djangoflash.storage.session – Session-based storage (default);

• djangoflash.storage.cookie – Cookie-based storage;

The good news is that you can create your own storage backend if the existing ones are getting in your way. To do so,
the first thing you need to do is create a Python module with a class called FlashStorageClass:

Let’s suppose this module is called ’myproj.djangoflash.custom’

You can use the serialization codec configured by the user
from djangoflash.codec import codec

class FlashStorageClass(object):
def _is_flash_stored(self, request):

This method checks whether the flash is already stored
pass

def set(self, flash, request, response):
if flash:

Store the flash
pass

elif self._is_flash_stored(request):
Flash is null or empty, so remove the already stored flash
pass

1.4. Creating a custom flash storage backend 9

Django-flash Documentation, Release 1.8

def get(self, request):
if self._is_flash_stored(request):

Return the stored flash
pass

Then, to use your custom flash storage backend, add the following setting to your project’s settings.py file:

FLASH_STORAGE = ’myproj.djangoflash.custom’ # Path to module

See Also:

Configuration

1.5 Creating a custom serialization codec

Since version 1.7, Django-Flash supports custom flash serialization codecs.

By default, Django-Flash provides three built-in codecs:

• djangoflash.codec.json_impl – JSON-based codec (default);

• djangoflash.codec.json_zlib_impl – JSON/zlib-based codec;

• djangoflash.codec.pickle_impl – Pickle-based codec;

The good news is that you can create your own codec if the existing ones are getting in your way. To do so, the first
thing you need to do is create a Python module with a class called CodecClass:

Let’s suppose this module is called ’myproj.djangoflash.custom’

from djangoflash.codec import BaseCodec

class CodecClass(BaseCodec):
def __init__(self):

BaseCodec.__init__(self)

def encode(self, flash):
pass

def decode(self, encoded_flash):
pass

Note that custom codecs must extend the djangoflash.codec.BaseCodec class direct or indirectly.

Finally, to use your custom codec, add the following setting to your project’s settings.py file:

FLASH_CODEC = ’myproj.djangoflash.custom’ # Path to module

See Also:

Configuration

1.6 Django-Flash overview

1.6.1 djangoflash.models — Django-Flash model

This module provides the FlashScope class, which provides a simple way to pass temporary objects between views.

10 Chapter 1. Documentation contents

Django-flash Documentation, Release 1.8

FlashScope Class

class djangoflash.models.FlashScope(data=None)
Bases: object

The purpose of this class is to implement the flash, which is a temporary storage mechanism that looks like a
Python dictionary, so you can store values associated with keys and later retrieve them.

It has one special property: by default, values stored into the flash during the processing of a request will
be available during the processing of the immediately following request. Once that second request has been
processed, those values are removed automatically from the storage.

The following operations are supported by FlashScope instances:

len(flash)
Returns the number of items in flash.

flash[key]
Returns the item of flash with key key. Raises a KeyError if key is not found.

flash[key] = value
Sets flash[key] to value.

del flash[key]
Removes flash[key]. Raises a KeyError if key is not found.

key in flash
Returns True if flash has a key key, else False.

key not in flash
Equivalent to not key in flash.

flash.now[key] = value
Sets flash[key] to value and marks it as used.

flash.now(**items)
Puts items into flash and marks those items as used.

flash.now.add(key, *values)
Appends one or more values to key in flash.

add(key, *values)
Appends one or more values to key in this flash.

clear()
Removes all items from this flash.

discard(*keys)
Marks the entire current flash or a single value as used, so when the next request hit the server, those values
will be automatically removed from this flash by FlashMiddleware.

get(key, default=None)
Gets the value under the given key. If the key is not found, default is returned instead.

items()
Returns the list of items as tuples (key, value).

iteritems()
Returns an iterator over the (key, value) items.

iterkeys()
Returns an iterator over the keys.

1.6. Django-Flash overview 11

Django-flash Documentation, Release 1.8

itervalues()
Returns an iterator over the values.

keep(*keys)
Prevents specific values from being removed on the next request. If this method is called with no args, the
entire flash is preserved.

keys()
Returns the list of keys.

pop(key, default=None)
Removes the specified key and returns the corresponding value. If key is not found, default is returned
instead.

put(**kwargs)
Puts one or more values into this flash.

to_dict()
Exports this flash to a dict.

update()
Mark for removal entries that were kept, and delete unkept ones.

values()
Returns the list of values.

See Also:

Django-Flash overview

1.6.2 djangoflash.middleware — Django-Flash middleware

This module provides the FlashMiddleware class, which manages the flash whenever a HTTP request hits the
server.

To plug this middleware to your Django project, edit your project’s settings.py file as follows:

MIDDLEWARE_CLASSES = (
’djangoflash.middleware.FlashMiddleware’,

)

FlashMiddleware Class

class djangoflash.middleware.FlashMiddleware
Bases: object

This middleware uses the flash storage backend specified by the project’s settings.py file in order to store
and retrieve djangoflash.models.FlashScope objects, being also responsible for expiring old flash-
scoped objects.

Note: This class is designed to be used by the Django framework itself.

process_request(request)
This method is called by the Django framework when a request hits the server.

process_response(request, response)
This method is called by the Django framework when a response is sent back to the user.

12 Chapter 1. Documentation contents

Django-flash Documentation, Release 1.8

See Also:

Django-Flash overview

1.6.3 djangoflash.context_processors — Django-Flash context processors

This module provides the context processor that exposes djangoflash.models.FlashScope objects to view
templates.

To plug this context processor to your Django project, edit your project’s settings.py file as follows:

TEMPLATE_CONTEXT_PROCESSORS = (
’djangoflash.context_processors.flash’,

)

Doing this, the view templates will be able to access the flash contents using the flash context variable.

Warning: Your views should use the RequestContext class to render the templates, otherwise the flash
variable (along with all other variables provided by other context processors) won’t be available to them. Please
read the Django docs for further instructions.

djangoflash.context_processors.flash(request)
This context processor gets the FlashScope object from the current request and adds it to the template context:

<html>
<head></head>
<body>

request.flash[’message’] = {{ flash.message }}
</body>

</html>

See Also:

Django-Flash overview

1.6.4 djangoflash.decorators — Django-Flash decorators

This module provides decorators to simplify common tasks.

djangoflash.decorators.keep_messages(*keys)
Prevents specific values from being removed during the processing of the decorated view. If this decorator is
used with no args, the entire flash is preserved.

See Also:

Django-Flash overview

1.6.5 djangoflash.storage — Flash storage backends

This package provides some built-in flash storage backends used to persist the flash contents across requests.

djangoflash.storage.get_storage(module)
Creates and returns the flash storage backend defined in the given module path (ex:
"myapp.mypackage.mymodule"). The argument can also be an alias to a built-in storage backend,
such as "session" or "cookie".

1.6. Django-Flash overview 13

http://docs.djangoproject.com/en/dev/ref/templates/api/

Django-flash Documentation, Release 1.8

Built-in flash storage backends

djangoflash.storage.session — Session-based flash storage

This module provides a session-based flash storage backend.

Since this backend relies on the user’s session, you need to include the SessionMiddleware class to the
MIDDLEWARE_CLASSES section of your project’s settings.py file:

MIDDLEWARE_CLASSES = (
’django.contrib.sessions.middleware.SessionMiddleware’,
’djangoflash.middleware.FlashMiddleware’,

)

See Also:

Configuration

FlashStorageClass Class
class djangoflash.storage.session.FlashStorageClass

Bases: object

Session-based flash storage backend.

get(request)
Returns FlashScope object stored in the session.

set(flash, request, response)
Stores the given FlashScope object in the session.

See Also:

Django-Flash overview

djangoflash.storage.cookie — Cookie-based flash storage

This module provides a cookie-based flash storage backend.

Warning: The actual FlashScope object is sent back to the user in a cookie. Although some encryption is
performed to help spot when the flash data is modified by third-parties, this backend should be avoided when
sensitive information is stored in the flash.

Warning: Although in general user agents’ cookie support should have no fixed limits, according to RFC-2965,
section 5.3, all implementations must support at least 4096 bytes per cookie. So be careful about the amount of
data you store in the flash when using this storage backend.

FlashStorageClass Class
class djangoflash.storage.cookie.FlashStorageClass

Bases: object

Cookie-based flash storage backend.

get(request)
Returns FlashScope object stored in a cookie.

14 Chapter 1. Documentation contents

http://www.ietf.org/rfc/rfc2965.txt

Django-flash Documentation, Release 1.8

set(flash, request, response)
Stores the given FlashScope object in a cookie.

See Also:

Django-Flash overview

See Also:

Django-Flash overview

1.6.6 djangoflash.codec — Flash serialization codecs

This package provides some built-in flash serialization codecs.

djangoflash.codec.get_codec(module)
Creates and returns the codec defined in the given module path (ex: "myapp.mypackage.mymodule").
The argument can also be an alias to a built-in codec, such as "json", "json_zlib" or "pickle".

BaseCodec Class

class djangoflash.codec.BaseCodec
Bases: object

Base codec implementation. All codec implementations must extend this class.

decode(encoded_flash)
Empty implementation that raises NotImplementedError.

decode_signed(encoded_flash)
Restores the flash object from the given encoded-and-signed data.

encode(flash)
Empty implementation that raises NotImplementedError.

encode_and_sign(flash)
Returns an encoded-and-signed version of the given flash.

Built-in serialization codecs

djangoflash.codec.json_impl — JSON-based codec implementation

This module provides a JSON-based codec implementation.

CodecClass Class
class djangoflash.codec.json_impl.CodecClass

Bases: djangoflash.codec.BaseCodec

JSON-based codec implementation.

decode(encoded_flash)
Restores the flash from the given JSON string.

encode(flash)
Encodes the given flash as a JSON string.

See Also:

Django-Flash overview

1.6. Django-Flash overview 15

Django-flash Documentation, Release 1.8

djangoflash.codec.json_zlib_impl — JSON/zlib-based codec implementation

This module provides a JSON-based codec implementation that uses the zlib module to reduce the encoded flash
footprint.

CodecClass Class
class djangoflash.codec.json_zlib_impl.CodecClass

Bases: djangoflash.codec.json_impl.CodecClass

JSON/zlib-based codec implementation.

decode(encoded_flash)
Restores the flash from the given zlib compressed JSON string.

encode(flash)
Encodes the given flash as a zlib compressed JSON string.

See Also:

Django-Flash overview

djangoflash.codec.pickle_impl — Pickle-based codec implementation

This module provides a Pickle-based codec implementation.

Warning: The use of this codec is not recommended since the Pickle documentation itself clearly states that it’s
not intended to be secure against erroneous or maliciously constructed data.

CodecClass Class
class djangoflash.codec.pickle_impl.CodecClass

Bases: djangoflash.codec.BaseCodec

Pickle-based codec implementation.

decode(encoded_flash)
Restores the flash from the given Pickle dump string.

encode(flash)
Encodes the given flash as a Pickle dump string.

See Also:

Django-Flash overview

See Also:

Django-Flash overview

1.7 Getting Involved

As with any open source project, there are several ways you can help:

• Report bugs, feature requests and other issues in the issue tracking system;

• Submit patches to reported issues (both those you find, or that others have filed);

16 Chapter 1. Documentation contents

http://docs.python.org/library/pickle.html
http://github.com/danielfm/django-flash/issues

Django-flash Documentation, Release 1.8

• Help with the documentation by pointing out areas that are lacking or unclear, and if you are so inclined,
submitting patches to correct it;

• Improve the overall project quality by suggesting refactorings and improving the test cases. A great way to learn
– and in turn give value back to the community – is to review someone else’s code. So, we invite you to review
ours;

• Create and share packages to make it even easier to distribute Django-Flash to other users of your favourite
Distribution or Operating System;

• Write about Django-Flash in your blog or personal web site. Let your friends know about this project.

Your participation is much appreciated. Keep up with Django-Flash development on Github.

1.7.1 How do I join the team?

Django-Flash is a very mature project and it’s probably not going to get lots of new features. But those that the
developers notice participating to a high extent will be invited to join the team as a committer.

This is as much based on personality and ability to work with other developers and the community as it is with proven
technical ability. Being unhelpful to other users, or obviously looking to become a committer for bragging rights and
nothing else is frowned upon, as is asking to be made a committer without having contributed sufficiently to be invited.

1.7.2 Contact information

Author Daniel Fernandes Martins <daniel@destaquenet.com>

Company Destaquenet Technology Solutions

1.8 Changelog

Like any other piece of software, Django-Flash is evolving at each release. Here you can track our progress:

Version 1.8 (Feb 12, 2011)

• Notice: breaks backwards compatibility;

• Removed djangoflash.models.FlashScope.__call__() in order to avoid problems in Django 1.3;

• Removed deprecated (since version 1.7.1) method djangoflash.models.FlashScope.put_immediate()
in favor of flash.now[key] = value;

Version 1.7.2 (May 20, 2010)

• Notice: Django 1.2 already provides a built-in user “messages” framework, but we’ll continue to support
Django-Flash;

• Updated test code to make it work properly on post-1.2 versions of Django;

Version 1.7.1 (March 20, 2010)

• Notice: breaks backwards compatibility;

• Removed deprecated (since version 1.4.2) method djangoflash.models.FlashScope.has_key();

• Deprecating method djangoflash.models.FlashScope.put_immediate() in favor of
flash.now[key] = value;

• Deprecating method djangoflash.models.FlashScope.put() in favor of flash(key=value);

1.8. Changelog 17

http://github.com/danielfm/django-flash/tree/master
mailto:daniel@destaquenet.com
http://www.destaquenet.com/
http://weblog.destaquenet.com/2010/05/21/django-flash-and-djangos-new-messages-framework/
http://weblog.destaquenet.com/2010/05/21/django-flash-and-djangos-new-messages-framework/

Django-flash Documentation, Release 1.8

• Method djangoflash.models.FlashScope.add() can now append several values to the given key;

• Added a method add() to djangoflash.models.FlashScope.now that simplifies the storage of mul-
tiple immediate values under the same key;

Version 1.7 (October 25, 2009)

• Added support for custom flash serialization codecs;

• Three built-in codec implementations: JSON, JSON/zlib and Pickle;

• Module djangoflash.storage.base removed;

Version 1.6.3 (October 07, 2009)

• Using the DEBUG setting as the default value of FLASH_IGNORE_MEDIA;

Version 1.6.2 (September 18, 2009)

• Done some work to avoid the loss of messages when the CommonMiddleware returns a
HttpResponseRedirect due to a missing trailing slash;

Version 1.6.1 (August 19, 2009)

• Now the middleware checks if the request resolves to django.views.static.serve() instead of relying
on the MEDIA_URL setting;

Version 1.6 (August 13, 2009)

• Fixed a bug in which messages are prematurely removed from the flash when they are replaced using
flash.now in some circumstances;

• Added the FLASH_IGNORE_MEDIA setting to let the user choose whether requests to static files should be
ignored;

Version 1.5.3 (July 22, 2009)

• Fixed a bug in the middleware which causes flash data to be dicarded after requests to static files;

Version 1.5.2 (July 15, 2009)

• Added a djangoflash.decorators.keep_messages() decorator for keeping flash messages;

• New AUTHORS file;

Version 1.5.1 (June 26, 2009)

• Added a method djangoflash.models.FlashScope.add() that simplifies the storage of multiple val-
ues under the same key;

Version 1.5 (June 24, 2006)

• License changed from LGPL to BSD to give uses more freedom;

• Added support for custom flash storage backends;

• Added a cookie-based flash storage;

• Default session-based storage was factored out to an independent class;

• Added a few more sanity checks;

Version 1.4.4 (June 09, 2009)

• Fixed a critical bug in the middleware;

Version 1.4.3 (June 08, 2009)

• Added a few more sanity checks;

18 Chapter 1. Documentation contents

Django-flash Documentation, Release 1.8

Version 1.4.2 (February 13, 2009)

• Deprecating method djangoflash.models.FlashScope.has_key() in favor of key in flash;

• Documentation improvements;

• Internals refactoring;

Version 1.4.1 (February 06, 2009)

• Immediate values (djangoflash.models.FlashScope.now) can be manipulated using a dict-like syn-
tax;

• Unit test improvements;

• Documentation improvements;

Version 1.4 (February 05, 2009)

• Notice: breaks backwards compatibility;

• Now Django-Flash works pretty much like the original Ruby on Rails‘ flash;

• Several code optmizations;

• Several improvements on the test suite;

Version 1.3.5 (February 03, 2009)

• Several documentation improvements;

• Improvements on source code comments and unit tests;

Version 1.3.4 (February 01, 2009)

• Added Sphinx-based documentation;

• Source code changed to improve the Pylint score;

• djangoflash module now have a __version__ property, which is very useful when you need to know
what version of the Django-Flash is installed in your machine;

Version 1.3.3 (January 31, 2009)

• Critical Bug Fixed: Django-Flash creates several useless session entries when the cookie support in user’s
browser is disabled;

• Small improvements on unit tests;

Version 1.3.2 (December 07, 2008)

• Small fixes;

Version 1.3.1 (December 07, 2008)

• Added some sanity checks;

Version 1.3 (December 07, 2008)

• Notice: breaks backwards compatibility;

• Django-Flash now controls the expiration of flash-scoped values individually, which means that only expired
values are removed from the session (and not the whole flash context);

• Unit testing code was completely rewritten and now a real Django application is used in integration tests;

• Huge source code review to make it easier to read and to assure the use of Python conventions;

• Project renamed to Django-Flash (it was previously called djangoflash, without the hyphen);

1.8. Changelog 19

http://www.rubyonrails.org/
http://sphinx.pocoo.org/
http://www.logilab.org/857

Django-flash Documentation, Release 1.8

Version 1.2 (November 01, 2008)

• Notice: breaks backwards compatibility;

• Improvements on the test comments;

• Now the flash scope works pretty much like a dict, although still there’s no value-based expiration (the whole
flash scope expires at the end of the request);

Version 1.1 (November 01, 2008)

• Now using SetupTools to make the project easier to distribute;

Version 1.0 (October 22, 2008)

• First (very simple) version;

20 Chapter 1. Documentation contents

http://pypi.python.org/pypi/setuptools/

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

21

Django-flash Documentation, Release 1.8

22 Chapter 2. Indices and tables

PYTHON MODULE INDEX

d
djangoflash.codec, 15
djangoflash.codec.json_impl, 15
djangoflash.codec.json_zlib_impl, 16
djangoflash.codec.pickle_impl, 16
djangoflash.context_processors, 13
djangoflash.decorators, 13
djangoflash.middleware, 12
djangoflash.models, 10
djangoflash.storage, 13
djangoflash.storage.cookie, 14
djangoflash.storage.session, 14

23

Django-flash Documentation, Release 1.8

24 Python Module Index

INDEX

A
add() (djangoflash.models.FlashScope method), 11

B
BaseCodec (class in djangoflash.codec), 15

C
clear() (djangoflash.models.FlashScope method), 11
CodecClass (class in djangoflash.codec.json_impl), 15
CodecClass (class in djangoflash.codec.json_zlib_impl),

16
CodecClass (class in djangoflash.codec.pickle_impl), 16

D
decode() (djangoflash.codec.BaseCodec method), 15
decode() (djangoflash.codec.json_impl.CodecClass

method), 15
decode() (djangoflash.codec.json_zlib_impl.CodecClass

method), 16
decode() (djangoflash.codec.pickle_impl.CodecClass

method), 16
decode_signed() (djangoflash.codec.BaseCodec method),

15
discard() (djangoflash.models.FlashScope method), 11
djangoflash.codec (module), 15
djangoflash.codec.json_impl (module), 15
djangoflash.codec.json_zlib_impl (module), 16
djangoflash.codec.pickle_impl (module), 16
djangoflash.context_processors (module), 13
djangoflash.decorators (module), 13
djangoflash.middleware (module), 12
djangoflash.models (module), 10
djangoflash.storage (module), 13
djangoflash.storage.cookie (module), 14
djangoflash.storage.session (module), 14

E
encode() (djangoflash.codec.BaseCodec method), 15
encode() (djangoflash.codec.json_impl.CodecClass

method), 15

encode() (djangoflash.codec.json_zlib_impl.CodecClass
method), 16

encode() (djangoflash.codec.pickle_impl.CodecClass
method), 16

encode_and_sign() (djangoflash.codec.BaseCodec
method), 15

F
flash() (in module djangoflash.context_processors), 13
FlashMiddleware (class in djangoflash.middleware), 12
FlashScope (class in djangoflash.models), 11
FlashStorageClass (class in djangoflash.storage.cookie),

14
FlashStorageClass (class in djangoflash.storage.session),

14

G
get() (djangoflash.models.FlashScope method), 11
get() (djangoflash.storage.cookie.FlashStorageClass

method), 14
get() (djangoflash.storage.session.FlashStorageClass

method), 14
get_codec() (in module djangoflash.codec), 15
get_storage() (in module djangoflash.storage), 13

I
items() (djangoflash.models.FlashScope method), 11
iteritems() (djangoflash.models.FlashScope method), 11
iterkeys() (djangoflash.models.FlashScope method), 11
itervalues() (djangoflash.models.FlashScope method), 11

K
keep() (djangoflash.models.FlashScope method), 12
keep_messages() (in module djangoflash.decorators), 13
keys() (djangoflash.models.FlashScope method), 12

P
pop() (djangoflash.models.FlashScope method), 12
process_request() (djan-

goflash.middleware.FlashMiddleware method),
12

25

Django-flash Documentation, Release 1.8

process_response() (djan-
goflash.middleware.FlashMiddleware method),
12

put() (djangoflash.models.FlashScope method), 12

S
set() (djangoflash.storage.cookie.FlashStorageClass

method), 14
set() (djangoflash.storage.session.FlashStorageClass

method), 14

T
to_dict() (djangoflash.models.FlashScope method), 12

U
update() (djangoflash.models.FlashScope method), 12

V
values() (djangoflash.models.FlashScope method), 12

26 Index

	Documentation contents
	Installation
	Configuration
	Using Django-Flash
	Creating a custom flash storage backend
	Creating a custom serialization codec
	Django-Flash overview
	Getting Involved
	Changelog

	Indices and tables
	Python Module Index
	Index

